A stochastic hybrid model for DNA replication incorporating protein mobility dynamics
- Jonas Windhager
- Amelia Paine
- et al.
- 2022
- bioRxiv
Recent studies have revealed the importance of 3D chromatin structure in the regulation of vital biological processes. Our team has devised different deep learning models to predict 3D chromatin structure from chromatin conformation capture (Hi-C) experiments:
See open-source implementations of our models on GitHub.
Our team is interested in understanding how 3D genome structure and nuclear architecture affects vital biological processes. We develop in silico spatiotemporal models that simulate DNA and protein interactions within the 3D cell nucleus and capture the complex stochastic hybrid dynamics that govern these processes. Using this approach, we were able to realistically simulate DNA replication across a full fission yeast genome (see animation), elucidating mechanisms governing this vital cellular process.
Access the code on GitHub.