About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICME 2009
Conference paper
Who is the expert? Analyzing gaze data to predict expertise level in collaborative applications
Abstract
In this paper, we analyze complex gaze tracking data in a collaborative task and apply machine learning models to automatically predict skill-level differences between participants. Specifically, we present findings that address the two primary challenges for this prediction task: (1) extracting meaningful features from the gaze information, and (2) casting the prediction task as a machine learning (ML) problem. The results show that our approach based on profile hidden Markov models are up to 96% accurate and can make the determination as fast as one minute into the collaboration, with only 5% of gaze observations registered. We also provide a qualitative analysis of gaze patterns that reveal the relative expertise level of the paired users in a collaborative learning user study. ©2009 IEEE.