About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
DaMoN 2006
Conference paper
Using secure coprocessors for privacy preserving collaborative data mining and analysis
Abstract
Secure coprocessors have traditionally been used as a keystone of a security subsystem, eliminating the need to protect the rest of the subsystem with physical security measures. With technological advances and hardware miniaturization they have become increasingly powerful. This opens up the possibility of using them for non traditional use. This paper describes a solution for privacy preserving data sharing and mining using cryptographically secure but resource limited coprocessors. It uses memory light data mining methodologies along with a light weight database engine with federation capability, running on a coprocessor. The data to be shared resides with the enterprises that want to collaborate. This system will allow multiple enterprises, which are generally not allowed to share data, to do so solely for the purpose of detecting particular types of anomalies and for generating alerts. We also present results from experiments which demonstrate the value of such collaborations. Copyright 2006 ACM.