About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ISSTA 2012
Workshop paper
Using program closures to make an application programming interface (API) implementation thread safe
Abstract
Consider a set of methods implementing an Application Programming Interface (API) of a given library or program module that is to be used in a multithreaded setting. If those methods were not originally designed to be thread safe, races and deadlocks are expected to happen. This work introduces the novel concept of program closure and describes how it can be applied in a methodology used to make the library or module implementation thread safe, by identifying the high level data races introduced by interleaving the parallel execution of methods from the API. High-level data races result from the misspecification of the scope of an atomic block, by wrongly splitting it into two or more atomic blocks sharing a data dependency. Roughly speaking, the closure of a program P, clos(P), is obtained by incrementally adding new threads to P in such a way that enables the identification of the potential high level data races that may result from running P in parallel with other programs. Our model considers the methods implementing the API of a library of program module as concurrent programs and computes and analyses their closure in order to identify high level data races. These high level data races are inspected and removed to make the interface thread safe. We illustrate the application of this methodology with a simple use case. © 2012 ACM.