About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SPIE DCS 2020
Conference paper
Using AI/ML to predict perpetrators for terrorist incidents
Abstract
One of the key factors affecting any multi-domain operation concerns the influence of unorganized militias, which may often counter a more advanced adversary by means of terrorist incidents. In order to ensure the achievement of strategic objectives, the actions and influence of such violent activities need to be taken into account. However, in many cases, full information about the incidents that may have affected civilians and non-government organizations is hard to determine. In the situation of asymmetric warfare, or when planning a multi-domain operation, often the identity of the perpetrator may not themselves be known. In order to support a coalition commander's mandate, one could use AI/ML techniques to provide the missing details about incidents in the field which may only be partially understood or analyzed. In this paper, we examine the goal of predicting the identity of the perpetrator of a terrorist incident using AI/ML techniques on historical data, and discuss how well the AI/ML models can work to help clean the data available to the commander for data analysis.