Unsupervised deep embedding for novel class detection over data stream
Abstract
Data streams are continuous flows of data points. Novel class detection is an important part of data stream mining. A novel class is a newly emerged class that has not previously been modeled by the classifier over the input stream. This paper proposes deep embedding for novel class detection - a novel approach that combines feature learning using denoising autoencoding with novel class detection. A denoising autoencoder is a neural network with hidden layers aiming to reconstruct the input vector from a corrupted version. A nonparametric multidimensional change point detection approach is also proposed, to detect concept-drift (the change of data feature values over time). Experiments on several real datasets show that the approach significantly improves the performance of novel class detection.