About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
WWW 2012
Conference paper
Understanding task-driven information flow in collaborative networks
Abstract
Collaborative networks are a special type of social network formed by members who collectively achieve specific goals, such as fixing software bugs and resolving customers'problems. In such networks, information flow among members is driven by the tasks assigned to the network, and by the expertise of its members to complete those tasks. In this work, we analyze real-life collaborative networks to understand their common characteristics and how information is routed in these networks. Our study shows that collaborative networks exhibit significantly different properties compared with other complex networks. Collaborative networks have truncated power-law node degree distributions and other organizational constraints. Furthermore, the number of steps along which information is routed follows a truncated power-law distribution. Based on these observations, we developed a network model that can generate synthetic collaborative networks subject to certain structure constraints. Moreover, we developed a routing model that emulates task-driven information routing conducted by human beings in a collaborative network. Together, these two models can be used to study the efficiency of information routing for different types of collaborative networks - a problem that is important in practice yet difficult to solve without the method proposed in this paper.