About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Chemistry of Materials
Paper
Ultrahigh-temperature polymers for second-order nonlinear optics. Synthesis and properties of robust, processable, chromophore-embedded polyimides
Abstract
A general, convergent approach to the synthesis of a series of stilbene- and azo-based donor-acceptor, second-order nonlinear optical (NLO) chromophores is reported. The synthetic strategy enables preparation of both acid- and base-reactive structures, yielding protected, diamine-functionalized chromophores which can be liberated using either acidic or alkaline regents for incorporation into polyimide backbones. Three such chromophores, bis(4-aminophenyl)[4-(2-(4-nitrophenyl)vinyl)phenyl]amine, bis(4-aminophenyl)[4-(2-(6-nitrobenzothiazol-2-yl)vinyl)phenyl]amine, 2-[4-((4-(bis(4-aminophenyl)amino)phenyl)diazenyl)phenyl]-2-phenyl-1,1-dicyan oethylene, all having high thermal stabilites, were synthesized, characterized, and condensed with hexafluoroisopropylidene diphthalic anhydride or 2-(1,3-dioxoisobenzofuran-5-ylcarbonyloxy)ethyl 1,3-dioxoisobenzofuran-5-carboxylate to yield six high glass transition temperature polyimides (T(g) as high as 313 °C) for use as poled NLO materials. After casting as thin films, curing, and electric field corona poling, these materials exhibit χ((2)) (1064 nm) responses as high as 82.0 pm/V and negligible decay in response upon aging in air at 100 °C for over 1000 h.