About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
We present two new results about exact learning by quantum computers. First, we show how to exactly learn a k-Fourier-sparse n-bit Boolean function from O(k1.5(log k)2) uniform quantum examples for that function. This improves over the bound of Θ(e kn) uniformly random classical examples (Haviv and Regev, CCC'15). Additionally, we provide a possible direction to improve our Oe(k1.5) upper bound by proving an improvement of Chang's lemma for k-Fourier-sparse Boolean functions. Second, we show that if a concept class C can be exactly learned using Q quantum membership queries, then it can also be learned using O (logQ2Q log |C| ) classical membership queries. This improves the previous-best simulation result (Servedio and Gortler, SICOMP'04) by a log Q-factor.