About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AAAI 2023
Tutorial
Time Series Anomaly Detection Tool: Hands of Lab
Abstract
Asset Health and Monitoring is an emerging AI Application that aims to deliver efficient AI-powered solutions to various industrial problems such as anomaly detection, failure pattern analysis, etc. In this lab-based tutorial, we present a web-based time series anomaly detection tool – a new scikit-learn compatible toolkit specialized for the time series-based anomaly detection problem. The key focus of our tutorial includes the design and development of an anomaly detection pipeline, a zero-configuration interface for automated discovery of an anomaly pipeline for any given dataset (univariate and multi-variate), a set of 5 frequently used workflow empirically derived from past experiences, a scalable technique for conducting efficient pipeline execution. We extensively tested deployed anomaly detection services using multiple datasets with varying time-series data characteristics.