About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Theory of Computing
Paper
Tight hardness of the non-commutative grothendieck problem
Abstract
We prove that for any e > 0 it is NP-hard to approximate the non-commutative Grothendieck problem to within a factor 1=2+ε, which matches the approximation ratio of the algorithm of Naor, Regev, and Vidick (STOC’13). Our proof uses an embedding of ℓ2 into the space of matrices endowed with the trace norm with the property that the image of standard basis vectors is longer than that of unit vectors with no large coordinates. We also observe that one can obtain a tight NP-hardness result for the commutative Little Grothendieck problem; previously, this was only known based on the Unique Games Conjecture (Khot and Naor, Mathematika 2009).