Conference paper

System combination and score normalization for spoken term detection

View publication


Spoken content in languages of emerging importance needs to be searchable to provide access to the underlying information. In this paper, we investigate the problem of extending data fusion methodologies from Information Retrieval for Spoken Term Detection on low-resource languages in the framework of the IARPA Babel program. We describe a number of alternative methods improving keyword search performance. We apply these methods to Cantonese, a language that presents some new issues in terms of reduced resources and shorter query lengths. First, we show score normalization methodology that improves in average by 20% keyword search performance. Second, we show that properly combining the outputs of diverse ASR systems performs 14% better than the best normalized ASR system. © 2013 IEEE.