About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Chemistry of Materials
Paper
Synthesis and magnetic properties of FePt@MnO nano-heteroparticles
Abstract
Monodisperse FePt@MnO nano-heteroparticles with different sizes and morphologies were prepared by a seed-mediated nucleation and growth technique. Both size and morphology of the individual domains could be controlled by adjustment of the synthetic parameters. As a consequence, different particle constructs, including dimers, dumbbell-like particles, and flowerlike particles, could be obtained by changing the polarity of the solvent. The FePt@MnO nano-heteroparticles were thoroughly characterized by high resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD) analyses and superconducting quantum interference device (SQUID) magnetometry. Due to a sufficient lattice match, the MnO nanoparticles (NPs) preferentially grow on the (111) surfaces of the fcc-FePt seeds. Furthermore, the surface spins of the antiferromagnetic MnO domains pin the magnetic moments of the ferromagnetic FePt NPs, which leads to an exchanged biased magnetic hysteresis. © 2012 American Chemical Society.