Publication
Nonlinearity
Paper

Synchronization in networks of nonlinear dynamical systems coupled via a directed graph

View publication

Abstract

We study synchronization in an array of coupled identical nonlinear dynamical systems where the coupling topology is expressed as a directed graph and give synchronization criteria related to properties of a generalized Laplacian matrix of the directed graph. In particular, we extend recent results by showing that the array synchronizes for sufficiently large cooperative coupling if the underlying graph contains a spanning directed tree. This is an intuitive yet nontrivial result that can be paraphrased as follows: if there exists a dynamical system which influences directly or indirectly all other systems, then synchronization is possible for strong enough coupling. The converse is also true in general. © 2005 IOP Publishing Ltd and London Mathematical Society.

Date

Publication

Nonlinearity

Authors

Topics

Share