About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Surface photovoltage on Si(111)-(7x7) probed by optically pumped scanning tunneling microscopy
Abstract
Scanning tunneling microscopy (STM) is combined with optical excitation techniques to probe spatially resolved, nonequilibrium electronic transport processes at Si(111)-(?X7) surface. Photoexcited carriers separate in the subsurface space-charge region, producing a surface photovoltage which is detected using the STM tip as a potentiometer. While the photovoltage is uniform on well-ordered regions of Si(111)-(7X 7), strong decreases are observed near virtually all defects. Differences in the functional dependence of the photovoltage on the illumination intensity are also observed. The spatial dependence of the photovoltage primarily results from spatial variations in the local surface recombination rate. © 1990, American Vacuum Society. All rights reserved.