About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Applied Physics
Paper
Structural and thermoelectric properties of SiGe/Al multilayer systems during metal induced crystallization
Abstract
While the process of metal induced crystallization (MIC) is widely used in the fabrication of thin film electronic devices, its application to the field of thermoelectrics is fairly new. Especially, its implementation in the field of the classic thermoelectric material SiGe could lead to a low cost approach by combining the benefits of low thermal budget, self-doping, and thin film and sputter deposition compatibility. In this work, samples consisting of SiGe/Al multilayers deposited on aluminum oxide based substrates have been prepared. Special emphasis was put on the ratio of Al to SiGe and the resulting changes in transport properties during annealing. On one hand, a certain amount of Al is needed to ensure a complete MIC process for the SiGe, but on the other hand, an excess of Al results in a metallic system with low thermoelectric efficiency. In-situ characterization during annealing of the samples was carried out via x-ray diffraction, electrical resistivity, and Seebeck measurements.