About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Materials Research
Paper
Strong visible light emission from silicon-oxycarbide nanowire arrays prepared by electron beam lithography and reactive ion etching
Abstract
The present report presents results from the fabrication, structural, and optical characteristics of sub-100 nm thermal chemical vapor deposition-grown silicon-oxycarbide (SiC xO y) nanowire (NW) arrays fabricated by e-beam lithography and reactive-ion-etching. The composition of SiC xO y materials follows closely the silicon-oxycarbide stoichiometry [SiC xO2(1-x), (0 < x < 1)] as observed by compositional and structural analysis. The corresponding structural and bonding evolution of SiC xO y are well-correlated with changes in their optical properties, as demonstrated by the linear dependence of their optical gap and refractive index with [Si-C]/[Si-O] bond-area ratio. By virtue of these advantages, properly tailored SiC xO y NWs were fabricated, exhibiting strong roomerature visible photoluminescence (PL) through engineering of [Si-C]/[Si-O] bonds. The current studies focused on the thermal-oxidation and excitation intensity behavior of SiC xO y NWs revealed their very good stability, as their luminescence characteristics remain unchanged upon annealing in oxygen ambient (250 °C), while the PL intensity dependence on the excitation power-density exhibited a linear increase up to ∼800 W/cm2.