About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Probab. Eng. Inf. Sci.
Paper
Stochastic petri nets: Modeling power and limit theorems
Abstract
Generalized semi-Markov processes and stochastic Petri nets provide building blocks for specification of discrete event system simulations on a finite or countable state space. The two formal systems differ, however, in the event scheduling (clock-setting) mechanism, the state transition mechanism, and the form of the state space. We have shown previously that stochastic Petri nets have at least the modeling power of generalized semi-Markov processes. In this paper we show that stochastic Petri nets and generalized semi-Markov processes, in fact, have the same modeling power. Combining this result with known results for generalized semi-Markov processes, we also obtain conditions for time-average convergence and convergence in distribution along with a central limit theorem for the marking process of a stochastic Petri net. © 1991, Cambridge University Press. All rights reserved.