About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Superlattices and Microstructures
Paper
Stark and Zeeman effects in excitons in GaAs/GaAlAs quantum wells
Abstract
We have studied the effects of electric and magnetic fields in the excitonic spectrum of GaAs/GaAlAs quantum wells by means of low-temperature photoluminescence excitation spectroscopy. The electric field, perpendicular to the layers, couples different excited states of the heavy-hole exciton with the ground state of the light-hole exciton. As a result of this coupling, fine structure becomes visible in the spectra. A small magnetic field (∼0.5 Tesla) is applied to remove degeneracies of the excitons and to enhance the oscillator strength of excited exciton-states. These states are resolved with the use of circularly polarized light, which enables us to separate the Zeeman components of the excitons. We are able to assign all the peaks appearing in the complicated excitonic fine structure by comparison with calculations, which take into account valence-band mixing and electric and magnetic field effects. © 1989.