About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Physics Letters
Paper
Stabilization and control of topological magnetic solitons via magnetic nanopatterning of exchange bias systems
Abstract
Stabilizing and manipulating topological magnetic quasiparticles in thin films is of great interest for potential applications in data storage and information processing. Here, we present a strategy for stabilizing magnetic vortices and Bloch lines with controlled position, vorticity, and chirality in a continuous exchange bias system. By tailoring vectorially the unidirectional anisotropy of the system at the nanoscale, via thermally assisted magnetic scanning probe lithography, we show experimentally and via micromagnetic simulations the non-volatile creation of vortex-antivortex pairs. In addition, we demonstrate the deterministic stabilization of cross and circular Bloch lines within patterned Néel magnetic domain walls. This work enables the implementation of complex functionalities based on the control of tailored topological spin-textures in spintronic and magnonic nanodevices.