Publication
APS March Meeting 2023
Invited talk

Spin-Transfer-Torque MRAM: The Next Revolution in Memory

View publication

Abstract

Spin-Transfer-Torque MRAM was invented at IBM by John Slonczewski in the early 1990s. By using a spin-polarized current, instead of a magnetic field, to write a magnetic free layer in a magnetic tunnel junction, the required write current naturally decreases with area, providing attractive technology scaling. The discovery of perpendicular magnetic anisotropy in thin CoFeB/MgO layers at IBM and independently by Tohoku University enabled a dramatic reduction in the switching current, and opened the way to practical perpendicular magnetic tunnel junctions for dense Spin-Transfer-Torque MRAM. This talk will provide an overview of Spin-Transfer-Torque MRAM, including the two basic building blocks described above. I’ll give an introduction to the physics of spin-transfer torque and applications of Spin-Transfer-Torque MRAM. Then I will review why perpendicular magnetic anisotropy is advantageous for MRAM compared to in-plane anisotropy, and the materials challenges of perpendicular anisotropy. I will discuss the research at IBM in 2009 that led to our discovery of perpendicular anisotropy in thin CoFeB/MgO layers, and our use of these layers to make the first practical perpendicular magnetic tunnel junctions and the first demonstration of reliable writing in Spin-Transfer-Torque MRAM. Finally I will review our recent results on methods to lower the switching current of Spin-Transfer-Torque MRAM by using optimized magnetic materials and double magnetic tunnel junctions, including our recent demonstration of reliable 250 ps switching.

Date

Publication

APS March Meeting 2023

Authors

Topics

Share