Publication
Methodology and Computing in Applied Probability
Paper

Spectrum-Based Comparison of Stationary Multivariate Time Series

View publication

Abstract

The problem of comparison of several multivariate time series via their spectral properties is discussed. A pairwise comparison between two independent multivariate stationary time series via a likelihood ratio test based on the estimated cross-spectra of the series yields a quasi-distance between the series. A hierarchical clustering algorithm is then employed to compare several time series given the quasi-distance matrix. For use in situations where components of the multivariate time series are measured in different units of scale, a modified quasi-distance based on a profile likelihood based estimation of the scale parameter is described. The approach is illustrated using simulated data and data on daily temperatures and precipitations at multiple locations. A comparison between hierarchical clustering based on the likelihood ratio test quasi-distance and a quasi-distance described in Kakizawa et al. (J Am Stat Assoc 93:328-340, 1998) is interesting. © 2010 Springer Science+Business Media, LLC.