Publication
CIKM 2014
Conference paper
Solving linear SVMs with multiple 1D projections
Abstract
We present a new methodology for solving linear Support Vector Machines (SVMs) that capitalizes on multiple 1D projections. We show that the approach approximates the optimal solution with high accuracy and comes with analytical guarantees. Our solution adapts on methodologies from random projections, exponential search, and coordinate descent. In our experimental evaluation, we compare our approach with the popular liblinear SVM library. We demonstrate a significant speedup on various benchmarks. At the same time, the new methodology provides a comparable or better approximation factor of the optimal solution and exhibits smooth convergence properties. Our results are accompanied by bounds on the time complexity and accuracy.