Heinz Schmid, Hans Biebuyck, et al.
Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures
Relative magnitudes of the single-particle relaxation time and the scattering time that enters in conductivity are given for two- and three-dimensional electron gases in the presence of random distributions of charged Coulomb scattering centers. We find that for accessible electron densities in the usual three-dimensional metallic systems the scattering time is at most a factor of 2 larger than the single-particle relaxation time whereas in high-mobility GaAs-based heterojunctions the spatial separation between the impurities and the carriers gives rise to scattering times which can be as much as two orders of magnitude larger than the corresponding single-particle relaxation times. © 1985 The American Physical Society.
Heinz Schmid, Hans Biebuyck, et al.
Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures
Arvind Kumar, Jeffrey J. Welser, et al.
MRS Spring 2000
Xikun Hu, Wenlin Liu, et al.
IEEE J-STARS
Frank Stern
Physical Review