Publication
Forum Mathematicum
Paper

Sequential motion planning algorithms in real projective spaces: An approach to their immersion dimension

View publication

Abstract

The s-th higher topological complexity TCs ( X ) TCs(X) of a space X can be estimated from above by homotopical methods, and from below by homological methods. We give a thorough analysis of the gap between such estimates when X = RPm the real projective space of dimension m. In particular, we describe a number r ( m ) {r(m) , which depends on the structure of zeros and ones in the binary expansion of m, and with the property that 0 ≤ s m-TCs ( RPm ) ≤ δ s ( m ) for s ≥ r ( m ), where δs (m) = ( 0 , 1 , 0 ) s(m)=(0,1,0) for m = ( 0 , 1 , 2 ) mod 4. Such an estimation for TCs ( RPm ) TCs(RPm) appears to be closely related to the determination of the Euclidean immersion dimension of RPm . We illustrate the phenomenon in the case m = 3 .2 a. In addition, we show that, for large enough s and even m, TC s ( RPm ) TCs is characterized as the smallest positive integer t = t(m , s ) t=t(m,s) for which there is a suitable equivariant map from Davis' projective product space Ps to the ( t + 1 ) (t+1)-st join-power ( (2) s-1 )( t + 1 ) ((Z2)s-1(t+1) . This is a (partial, but conjecturally complete) generalization of the work of Farber, Tabachnikov and Yuzvinsky relating TC2 to the immersion dimension of real projective spaces.

Date

01 Mar 2018

Publication

Forum Mathematicum

Authors

Share