About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ECTC 2015
Conference paper
Semiconductor optical amplifier (SOA) packaging for scalable and gain-integrated silicon photonic switching platforms
Abstract
We report on the design, fabrication, packaging and characterization of a 4-channel semiconductor optical amplifier (SOA) flip-chip mounted on a photonic carrier. Significant loss occurs across high radix silicon photonic switching platforms due to multiple switching stages, waveguide crossings and I/O coupling elements. To overcome these losses, we propose the hybrid integration of a III-V SOA onto a photonic switch carrier to realize a gain neutral switch. Custom four channel cleaved facet SOA variants were designed with unique mounting structures for precise vertical alignment. A photonic carrier test site was designed with unique SiN waveguide coupling structures, vertical reference stops, a trench with metal lines and AuSn solder bumps for device bonding. Individual SOAs were attached to photonic carriers using a precision flip-chip bonder. All assemblies exhibited good bond strength and no line-line shorts were observed. The SOA and assembled test sites were characterized in the 1.5- 1.6 μm wavelength range. A net SOA/photonic carrier optical gain of greater than 10 dB was observed.