About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Trans. Inf. Theory
Paper
Sell-Corrective Character Recognition System
Abstract
The output of a simple statistical categorizer is used to improve recognition performance on a homogeneous data set. An array of initial weights contains a coarse description of the various classes; as the system cycles through a set of characters from the same source (a typewritten or printed page), the weights are modified to correspond more closely with the observed distributions. The true identities of the characters remain inaccessible throughout the training cycle. This experimental study of the effect of the various parameters in the algorithm is based on ~30 000 characters from fourteen different font styles. A fivefold average decrease over the initial rates is obtained in both errors and rejects. © 1966, IEEE. All rights reserved.