About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICALP 2020
Conference paper
Scheduling lower bounds via and Subset Sum
Abstract
Given N instances (X1, t1), . . ., (XN, tN) of Subset Sum, the AND Subset Sum problem asks to determine whether all of these instances are yes-instances; that is, whether each set of integers Xi has a subset that sums up to the target integer ti. We prove that this problem cannot be solved in time Oe((N · tmax)1−ε), for tmax = maxi ti and any ε > 0, assuming the ∀∃ Strong Exponential Time Hypothesis (∀∃-SETH). We then use this result to exclude Oe(n + Pmax · n1−ε)-time algorithms for several scheduling problems on n jobs with maximum processing time Pmax, assuming ∀∃-SETH. These include classical problems such as 1||P wjUj, the problem of minimizing the total weight of tardy jobs on a single machine, and P2||P Uj, the problem of minimizing the number of tardy jobs on two identical parallel machines.