About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
APS March Meeting 2023
Talk
Scalable integration of silicon nanophotonic devices on silicon carbide substrates
Abstract
Silicon carbide has emerged as a promising material for on-chip quantum and nonlinear nanophotonic devices. In addition to its excellent optical, electrical, and material properties, silicon carbide hosts optically active color centers and has a large intrinsic second-order nonlinear susceptibility. Here, we present a scalable, on-chip approach toward CMOS-compatible silicon-on-silicon carbide hybrid platforms via direct wafer bonding. Our optimized bonding method yields large-area, defect-free, uniform films with minimal oxide at the silicon-silicon carbide interface. By etching crystalline silicon nanophotonic waveguides and ring resonators into the silicon layer of the heterogenous film with well-established silicon fabrication methods that do not deteriorate the silicon carbide, we are able to fabricate high-quality, near-infrared resonators. This wafer scalable hybrid photonics platform could be an important step towards silicon carbide quantum technologies.