About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IBM J. Res. Dev
Paper
Scalable framework for 3D FFTs on the Blue Gene/L supercomputer: Implementation and early performance measurements
Abstract
This paper presents results on a communications-intensive kernel, the three-dimensional fast Fourier transform (3D FFT), running on the 2,048-node Blue Gene®/L (BG/L) prototype. Two implementations of the volumetric FFT algorithm were characterized, one built on the Message Passing Interface library and another built on an active packet Application Program Interface supported by the hardware bring-up environment, the BG/L advanced diagnostics environment. Preliminary performance experiments on the BG/L prototype indicate that both of our implementations scale well up to 1,024 nodes for 3D FFTs of size 128 × 128 × 128. The performance of the volumetric FFT is also compared with that of the Fastest Fourier Transform in the West (FFTW) library. In general, the volumetric FFT outperforms a port of the FFTW Version 2.1.5 library on large-node-count partitions. © Copyright 2005 by International Business Machines Corporation.