About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICPE 2014
Conference paper
Run-time performance optimization of a BigData query language
Abstract
JAQL is a query language for large-scale data that connects BigData analytics and MapReduce framework together. Also an IBM product, JAQL's performance is critical for IBM In-foSphere BigInsights, a BigData analytics platform. In this paper, we report our work on improving JAQL performance from multiple perspectives. We explore the parallelism of JAQL, profile JAQL for performance analysis, identify I/O as the dominant performance bottleneck, and improve JAQL performance with an emphasis on reducing I/O data size and increasing (de)serialization efficiency. With TPCH benchmark on a simple Hadoop cluster, we report up to 2x performance improvements in JAQL with our optimization fixes. Copyright is held by the owner/author(s). Publication rights licensed to ACM.