About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 2015
Conference paper
Robust binary hypothesis testing under contaminated likelihoods
Abstract
In hypothesis testing, the phenomenon of label noise, in which hypothesis labels are switched at random, contaminates the likelihood functions. In this paper, we develop a new method to determine the decision rule when we do not have knowledge of the uncontaminated likelihoods and contamination probabilities, but only have knowledge of the contaminated likelihoods. In particular we pose a minimax optimization problem that finds a decision rule robust against this lack of knowledge. The method simplifies by application of linear programming theory. Motivation for this investigation is provided by problems encountered in workforce analytics.