Shai Fine, Yishay Mansour
Machine Learning
Value function approximation methods have been successfully used in many applications, but the prevailing techniques often lack useful a priori error bounds. We propose a new approximate bilinear programming formulation of value function approximation, which employs global optimization. The formulation provides strong a priori guarantees on both robust and expected policy loss by minimizing specific norms of the Bellman residual. Solving a bilinear program optimally is NP-hard, but this worst-case complexity is unavoidable because the Bellman-residual minimization itself is NP-hard. We describe and analyze the formulation as well as a simple approximate algorithm for solving bilinear programs. The analysis shows that this algorithm offers a convergent generalization of approximate policy iteration. We also briefly analyze the behavior of bilinear programming algorithms under incomplete samples. Finally, we demonstrate that the proposed approach can consistently minimize the Bellman residual on simple benchmark problems. © 2011 Marek Petrik and Shlomo Zilberstein.
Shai Fine, Yishay Mansour
Machine Learning
Arnon Amir, Michael Lindenbaum
IEEE Transactions on Pattern Analysis and Machine Intelligence
Merve Unuvar, Yurdaer Doganata, et al.
CLOUD 2014
Fahiem Bacchus, Joseph Y. Halpern, et al.
IJCAI 1995