About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Mathematics of Operations Research
Paper
Revisiting stochastic loss networks: Structures and approximations
Abstract
We consider fundamental properties of stochastic loss networks, seeking to improve on the so-called Erlang fixed-point approximation. We propose a family of mathematical approximations for estimating the stationary loss probabilities and show that they always converge exponentially fast, provide asymptotically exact results, and yield greater accuracy than the Erlang fixed-point approximation. We further derive structural properties of the inverse of the classical Erlang loss function that characterize the region of capacities that ensures a workload is served within a set of loss probabilities. We then exploit these results to efficiently solve a general class of stochastic optimization problems involving loss networks. Computational experiments investigate various issues of both theoretical and practical interest, and demonstrate the benefits of our approach.