Regular and irregular progressive edge-growth tanner graphs
Abstract
We propose a general method for constructing Tanner graphs having a large girth by establishing edges or connections between symbol and check nodes in an edge-by-edge manner, called progressive edge-growth (PEG) algorithm. Lower bounds on the girth of PEG Tanner graphs and on the minimum distance of the resulting low-density parity-check (LDPC) codes are derived in terms of parameters of the graphs. Simple variations of the PEG algorithm can also be applied to generate linear-time encodeable LDPC codes. Regular and irregular LDPC codes using PEG Tanner graphs and allowing symbol nodes to take values over GF(q) (q > 2) are investigated. Simulation results show that the PEG algorithm is a powerful algorithm to generate good short-block-length LDPC codes. © 2005 IEEE.