About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ACS Spring 2021
Talk
Reducing circuit size in the variational quantum eigensolver
Abstract
The variational quantum eigensolver (VQE) is a promising technique for the near-term application of quantum coherent processors to the study of chemical and physical systems. However, the maximum accessible problem size is limited by the number of qubits in a processor that can be mutually entangled with high fidelity. For instance, swap operations needed to distribute entanglement across a device with limited connectivity can quickly consume the available error budget. Here we discuss how to soften this limitation by leveraging the structure of certain simulation problems to reduce the required circuit size. In the first half of the presentation, we will discuss the theoretical formulation of our approach, and applicability to problems of interest. In the second half, we will present data from quantum hardware demonstrating the viability of the approach, and discuss technical details of the experimental realization.