About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
New Journal of Physics
Paper
Reduced stochasticity in domain wall motion with increasing pinning density in thin Fe films
Abstract
We report in this paper the decrease of the stochasticity of magnetization half-reversal time with increasing domain wall (DW) pinning in Fe films investigated by means of time-resolved magneto-optic Kerr microscopy. The domain images in the films reveal that the density of DW pinning sites increases with increasing Fe thickness. However, we found that the stochasticity of the magnetization half-reversal time significantly decreases with increasing DW pinning. The major reason for the reduced stochasticity is shown to be due to a thermally activated DW creep mechanism that becomes dominant during magnetization reversal due to increased DW pinning. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.