About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Nano Letters
Paper
Quantum efficiency and capture cross section of first and second excitonic transitions of single-walled carbon nanotubes measured through photoconductivity
Abstract
Comparing photoconductivity measurements, using p-n diodes formed along individual single-walled carbon nanotubes (SWNT), with modeling results, allows determination of the quantum efficiency, optical capture cross section, and oscillator strength of the first (E11) and second (E22) excitonic transitions of SWNTs. This is in the infrared region of the spectrum, where little experimental work on SWNT optical absorption has been reported to date. We estimate quantum efficiency (η) ∼1-5% and provide a correlation of η, capture cross section, and oscillator strength for E11 and E22 with nanotube diameter. This study uses the spectral weight of the exciton resonances as the determining parameter in optical measurements. © 2013 American Chemical Society.