APS March Meeting 2023

Quancorde: Boosting Quantum Fidelity with an Ordered Diverse Ensemble of Clifford Canary Circuits

View publication


On today's noisy quantum devices, execution fidelity tends to collapse dramatically for most applications beyond a handful of qubits. This paper aims to boost quantum fidelity with Clifford canary circuits, by proposing Quancorde: Quantum Canary Ordered Diverse Ensembles, a fundamentally new approach to identifying the correct outcomes of extremely low-fidelity quantum applications. It is based on the key idea of diversity in quantum devices - variations in noise sources, make each (portion of a) device unique, and therefore, their impact on an application's fidelity, also unique. Quancorde utilizes Clifford canary circuits (which are classically simulable, but also resemble the target application structure and thus suffer similar structural noise impact) to order a diverse ensemble of devices or qubits/mappings approximately along the direction of increasing fidelity of the target application. Quancorde then estimates the correlation of the ensemble-wide probabilities of each output string of the application, with the canary ensemble ordering, and uses this correlation to weight the application's noisy probability distribution. The correct application outcomes are expected to have higher correlation with the canary ensemble order, and thus their probabilities are boosted in this process. Doing so, Quancorde improves the fidelity of evaluated quantum applications by a mean of 8.9x/4.2x and up to 34x.