About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SAC 2005
Conference paper
Quality-driven evaluation of trigger conditions on streaming time series
Abstract
For many applications, it is important to evaluate trigger conditions on time series streams. In a resource constrained environment, users' needs should ultimately decide how the evaluation system balances the competing factors such as evaluation speed, result precision, and load shedding level. This paper presents a basic framework for evaluation algorithms that takes user-specified quality requirements into consideration. Three optimization algorithms, each under a different set of quality requirements, are developed in the framework: (1) minimize the response time given accuracy requirements and without load shedding; (2) minimize the load shedding given a response time limit and accuracy requirements; and (3) minimize one type of accuracy errors given a response time limit and without load shedding. Experiments show that these optimization algorithms effectively achieve their optimization goals while satisfying the corresponding user-specified quality requirements. Copyright 2005 ACM.