About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SDM 2008
Conference paper
Proximity tracking on time-evolving bipartite graphs
Abstract
Given an author-conference network that evolves over time, which are the conferences that a given author is most closely related with, and how do they change over time? Large time-evolving bipartite graphs appear in many settings, such as social networks, co-citations, market-basket analysis, and collaborative filtering. Our goal is to monitor (i) the centrality of an individual node (e.g., who are the most important authors?); and (ii) the proximity of two nodes or sets of nodes (e.g., who are the most important authors with respect to a particular conference?) Moreover, we want to do this efficiently and incrementally, and to provide "any-time" answers. We propose pTrack and cTrack, which are based on random walk with restart, and use powerful matrix tools. Experiments on real data show that our methods are effective and efficient: the mining results agree with intuition; and we achieve up to 15-176 times speed-up, without any quality loss. Copyright © by SIAM.