About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Polymers for Advanced Technologies
Paper
Polymeric liquid crystals: structural basis for ferroelectric and nonlinear optical properties
Abstract
This paper describes the rational design and structure–property relations in three different types of polar LC polymers with interesting material properties, as follows. (i) Chiral LC polymers, which are functionalized with crosslinkable groups, can be converted into LC elastomers with chiral smectic C* phases. The mechanical orientability of these elastomers leads to new piezoelectric materials. (ii) The curing (dense crosslinking) of a polymer matrix provides one possibility of stabilizing the polar order of dye molecules, which is necessary for frequency doubling. Additionally, LC phases can help to stabilize this polar structure, which leads to large and stable nonlinear optical coefficients. (iii) Polymer analogous esterifications offer a convenient method for the synthesis of chiral smectic C* polymers with large ferrolectric polarizations. Copyright © 1992 John Wiley & Sons, Ltd.