About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SIGMOD Record (ACM Special Interest Group on Management of Data)
Paper
Outlier detection for high dimensional data
Abstract
The outlier detection problem has important applications in the field of fraud detection, network robustness analysis, and intrusion detection. Most such applications are high dimensional domains in which the data can contain hundreds of dimensions. Many recent algorithms use concepts of proximity in order to find outliers based on their relationship to the rest of the data. However, in high dimensional space, the data is sparse and the notion of proximity fails to retain its meaningfulness. In fact, the sparsity of high dimensional data implies that every point is an almost equally good outlier from the perspective of proximity-based definitions. Consequently, for high dimensional data, the notion of finding meaningful outliers becomes substantially more complex and non-obvious. In this paper, we discuss new techniques for outlier detection which find the outliers by studying the behavior of projections from the data set.