Publication
arXiv
Paper

O˜(T−1) Convergence to (Coarse) Correlated Equilibria in Full-Information General-Sum Markov Games

Abstract

No-regret learning has a long history of being closely connected to game theory. Recent works have devised uncoupled no-regret learning dynamics that, when adopted by all the players in normal-form games, converge to various equilibrium solutions at a near-optimal rate of O~(T1)\widetilde{O}(T^{-1}), a significant improvement over the O(1/T)O(1/\sqrt{T}) rate of classic no-regret learners. However, analogous convergence results are scarce in Markov games, a more generic setting that lays the foundation for multi-agent reinforcement learning. In this work, we close this gap by showing that the optimistic-follow-the-regularized-leader (OFTRL) algorithm, together with appropriate value update procedures, can find O~(T1)\widetilde{O}(T^{-1})-approximate (coarse) correlated equilibria in full-information general-sum Markov games within TT iterations. Numerical results are also included to corroborate our theoretical findings.

Date

Publication

arXiv

Share