About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
arXiv
Paper
O˜(T−1) Convergence to (Coarse) Correlated Equilibria in Full-Information General-Sum Markov Games
Abstract
No-regret learning has a long history of being closely connected to game theory. Recent works have devised uncoupled no-regret learning dynamics that, when adopted by all the players in normal-form games, converge to various equilibrium solutions at a near-optimal rate of , a significant improvement over the rate of classic no-regret learners. However, analogous convergence results are scarce in Markov games, a more generic setting that lays the foundation for multi-agent reinforcement learning. In this work, we close this gap by showing that the optimistic-follow-the-regularized-leader (OFTRL) algorithm, together with appropriate value update procedures, can find -approximate (coarse) correlated equilibria in full-information general-sum Markov games within iterations. Numerical results are also included to corroborate our theoretical findings.