About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Computer Communications
Paper
Optimal PNNI complex node representations for restrictive costs
Abstract
The Private Network-to-Network Interface (PNNI) is a scalable hierarchical protocol that allows ATM switches to be aggregated into clusters called peer groups. To provide good accuracy in choosing optimal paths in a PNNI network, the PNNI standard provides a way to represent a peer group with a structure called the complex node representation. It allows the cost of traversing the peer group between any ingress and egress to be advertised in a compact form. Complex node representations using a small number of links result in a correspondingly short path computation time and therefore in good performance. It is, accordingly, desirable that the complex node representation contains as few links as possible. In earlier work, a method was presented for constructing the set of the optimal complex node representations in the restrictive and symmetric cost case, under the assumption of a restricted set of optimal paths and a corresponding minimal path computation time. Here this method is extended to constructing the set of the optimal complex node representations appropriate for deployment in a heterogeneous environment where no uniform policy is used to derive them. These representations are not confined by a reduced optimal path constraint, and consequently use the absolute minimum possible number of links, resulting in a minimum path computation time. © 2003 Elsevier B.V. All rights reserved.