SODA 2015
Conference paper

Optimal approximation for submodular and supermodular optimization with bounded curvature

Download paper


We design new approximation algorithms for the problems of optimizing submodular and supermodular functions subject to a single matroid constraint. Specifically, we consider the case in which we wish to maximize a nondecreasing submodular function or minimize a nonincreasing supermodular function in the setting of bounded total curvature c. In the case of submodular maximization with curvature c, we obtain a (1-c/e)-approximation-the first improvement over the greedy (1-ε-c)/c-approximation of Conforti and Cornuejols from 1984, which holds for a cardinality constraint, as well as recent approaches that hold for an arbitrary matroid constraint. Our approach is based on modifications of the continuous greedy algorithm and non-oblivious local search, and allows us to approximately maximize the sum of a nonnegative, nondecreasing submodular function and a (possibly negative) linear function. We show how to reduce both submodular maximization and supermodular minimization to this general problem when the objective function has bounded total curvature. We prove that the approximation results we obtain are the best possible in the value oracle model, even in the case of a cardinality constraint. Finally, we give two concrete applications of our results in the settings of maximum entropy sampling, and the column-subset selection problem.


04 Jan 2015


SODA 2015