About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Physics Letters
Paper
On the relative importance of physical and chemical sputtering during ion-enhanced etching of silicon by XeF2
Abstract
Product translational energy distributions have been used in previous studies as a diagnostic of surface reaction enhancement mechanisms under ion bombardment. Haring and co-workers [R. A. Haring, A. Haring, F. W. Saris, and A. E. de Vries, Appl. Phys. Lett. 41, 174 (1982)] have taken an E-2 dependence for SiFx species desorbing during ion-enhanced etching of silicon as evidence for the importance of physical sputtering. In this work, the translational energy distribution of SiF 4 desorbing from the surface of silicon during spontaneous etching by XeF2 has been obtained from modulated beam measurements. The distribution deviates markedly from a thermal distribution at the surface temperature and exhibits an E-2 dependence at high energy. Observation of this energy dependence both with and without ions suggests that translational energy distributions may not provide a unique signature for chemical and physical sputtering.