About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SODA 2010
Conference paper
On the possibility of faster SAT algorithms
Abstract
We describe reductions from the problem of determining the satisfiability of Boolean CNF formulas (CNF-SAT) to several natural algorithmic problems. We show that attaining any of the following bounds would improve the state of the art in algorithms for SAT: • an O(nk-ε) algorithm for k-DOMINATING SET, for any k ≥ 3, • a (computationally efficient) protocol for 3-party set disjointness with o(m) bits of communication, • an no(d) algorithm for d-SUM, • an O(n2-ε) algorithm for 2-SAT formulas with m = n1+o(1) clauses, where two clauses may have unrestricted length, and • an O((n + m) k-ε) algorithm for HornSat with k unrestricted length clauses. One may interpret our reductions as new attacks on the complexity of SAT, or sharp lower bounds conditional on exponential hardness of SAT. Copyright © by SIAM.