About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Machine Learning
Paper
On the dual formulation of regularized linear systems with convex risks
Abstract
In this paper, we study a general formulation of linear prediction algorithms including a number of known methods as special cases. We describe a convex duality for this class of methods and propose numerical algorithms to solve the derived dual learning problem. We show that the dual formulation is closely related to online learning algorithms. Furthermore, by using this duality, we show that new learning methods can be obtained. Numerical examples will be given to illustrate various aspects of the newly proposed algorithms.