About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Theoretical Computer Science
Paper
On demand string sorting over unbounded alphabets
Abstract
On-demand string sorting is the problem of preprocessing a set of strings to allow subsequent queries for finding the k lexicographically smallest strings (and afterward the next k etc.) This on-demand variant strongly resembles the search engine queries which give you the best k-ranked pages recurringly. We present a data structure that supports this in O(n) preprocessing time, where n is the number of strings, and answer queries in O(logn) time. There is also a cost of O(N) time amortized over all operations, where N is the total length of the strings. Our data structure is a heap of strings, which supports heapify and delete-mins. As it turns out, implementing a full heap with all operations is not that simple. For the sake of completeness, we propose a heap with full operations based on balanced indexing trees that supports the heap operations in optimal times. © 2011 Elsevier B.V. All rights reserved.